Active Timing-Based Correlation of Perturbed Traffic Flows with Chaff Packets

Pai Peng, Peng Ning, Douglas Reeves
North Carolina State Univ.

Xinyuan Wang
George Mason Univ.
Attack Through Stepping Stones
Attack Trace-back

• Stepping stone *connection* chain:

 \[h_1 \leftrightarrow h_2 \leftrightarrow \ldots \leftrightarrow h_n \]

• Stepping stone *flows*:

 \[h_1 \leftrightarrow h_2 : h_1 \rightarrow h_2 \text{ and } h_2 \leftarrow h_1 \]

 \[i < j, \ h_i \rightarrow h_{i+1} \text{ is called an *upstream* flow of } h_j \rightarrow h_{j+1}, \]

 \[\text{and } \ h_j \rightarrow h_{j+1} \text{ is called a *downstream* flow of } h_i \rightarrow h_{i+1} \]

• Trace back problem:

 \[\text{Given an upstream flow, to identify its downstream flows.} \]
Attack Trace-back (cont’d)

• Countermeasures:
 – Content encryption
 – Timing perturbations
 – Extra padding packets: *Chaff*
Related Work

• Correlation based on packet contents
 – Thumb-printing
 – Sleepy watermark tracing

• Correlation based on timing characteristics
 – On/off periods
 – Deviation based
 – Watermark scheme based on Inter-packet delay (IPD) quantization
 – Multi-scale
 – Comparing the numbers of packets in the flows
Related Work (cont’d)

• Probabilistic watermark scheme
 – Embed watermark through slightly adjusting packet timing
 – Inter-packet-delay (IPD) of packet p_j and p_{j+d} is:
 $$\text{ipd} = t_{j+d} - t_j$$
 – Randomly construct $2r$ IPDs and divide them into 2 groups: ipd^1 and ipd^2, the average difference between IPDs in group 1 and 2 is:
 $$D = \frac{1}{2r} \sum_{i=1}^{r} (\text{ipd}_{i}^{1} - \text{ipd}_{i}^{2})$$
 – $E(D) = 0$
Probabilistic Watermarking (cont’d)
Probabilistic Watermarking (cont’d)

• Embed watermark
 – Embed bit 1: increase D
 • Increase IPDs in the 1$^{\text{st}}$ group, and
 • Decrease IPDs in the 2$^{\text{nd}}$ group.
 – Embed bit 0: decrease D

• Decode watermark
 – Check whether $D > 0$ or $D \leq 0$

• Robust to timing perturbation, but not chaff
 – Must known the location of watermark
Related Work (cont’d)

• Zhang et al.:
 – Finding possible matching packets
 – Different correlation schemes aiming at timing perturbation or/and chaff packets
 • Scheme S-IV
Proposed Approach

• Adopt probabilistic watermarking
 – Encode is ok, need to change decode

• Basic idea:
 – Find possible matching packets
 – Decode watermarks from all possible matching flows.
 – Use the “best” watermark that has the smallest hamming distance to the original watermark to determine correlation result.
 – Can detect any flow that probabilistic watermark scheme can.

• Assumptions:
 – No packet loss/merge through stepping stone connections.
 – The delays between corresponding packets are bounded by a maximum delay Δ (*timing constraint*).
 – The orders of packets are kept the same (*order constraint*).
Matching Packets

For each packet p_i in the upstream flow f, we find all its possible matching packets in the suspicious flow f':
- Matching set: $M(p_i) = \{ p_j' | 0 \leq t_j' - t_i \leq \Delta \}$
- Matching sets may overlap
Decoding the “Best” Watermark

- **Brute-force algorithm**
 - high computation cost

- **Greedy algorithm**: choose the packets that are most likely to produce the desired watermark.

 - **Pros:**
 - Low
 - Good detection rate

 - **Cons:**
 - High false positive rate
 - Brute-force algorithm: high computation cost
 - Greedy algorithm: choose the packets that are most likely to produce the desired watermark.

- **Pros:**
 - Matching Packets of P_i
 - Matching Packets of P_{i+d}

- **Cons:**
 - Smallest IPD
 - Largest IPD

Time
Decoding the “Best” Watermark (cont’d)

- Use *Greedy* algorithm to filter out the watermark bits that will not match.
- Carefully construct a flow satisfying the order constraint, and decode a watermark w_b.
- Gradually improve w_b by switching to other matching packets
 - *Greedy*+: using heuristics
 - Adjust the watermark bit that has the smallest IPD difference D first
 - Cannot affect the bits that are already matched
 - *Greedy**: enumerate all possible combinations of matching packets
Experimental Evaluation

- Compare the detection rates, false positive rates and computation costs of Greedy, Greedy+, Greedy*, probabilistic watermarking, and scheme S-IV.
- Using both real flows and synthetic flows.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta)</td>
<td>0, 1, 2, 3, 4, 5, 6, 7, 8 (second)</td>
</tr>
<tr>
<td>(\lambda_c)</td>
<td>0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5</td>
</tr>
<tr>
<td>Watermark</td>
<td>24 bits</td>
</tr>
<tr>
<td>Redundancy</td>
<td>4</td>
</tr>
<tr>
<td>WM threshold</td>
<td>7</td>
</tr>
<tr>
<td>WM delay</td>
<td>600ms</td>
</tr>
<tr>
<td>S-IV threshold</td>
<td>3 seconds</td>
</tr>
</tbody>
</table>
Detection Rate

Figure 1: Detection rate changing with λ_c, $\Delta = 7s$

Figure 2: Detection rate changing with Δ, $\lambda_c = 3$
False Positive Rate

Figure 3: False positive rate changing with λ_c, $\Delta = 7s$

Figure 4: False positive rate changing with Δ, $\lambda_c = 3$
Computation Cost: Correlated Flows

Figure 5: Computation costs changing with λ_c, $\Delta = 7s$, correlated flows

Figure 6: Computation costs changing with Δ, $\lambda_c = 3$, correlated flows
Computation Cost: Uncorrelated Flows

Figure 7: Computation costs changing with λ_c, $\Delta = 7s$, uncorrelated flows

Figure 8: Computation costs changing with Δ, $\lambda_c = 3$, uncorrelated flows
Conclusion

- A correlation scheme that can deal with both timing perturbation and chaff packets
- Different algorithms to achieve the best performance in terms of detection rate, false positive rate and computation cost.
- Through experimental evaluation, Greedy+ has shown the best result.
Thank you!

• Questions?